# SCOTTS VALLEY FIRE PROTECTION DISTRICT

STANDARD ARTICLE: II SOP: 2407

OPERATING SECTION: 2400 RESPONSE PROCEDURES

PROCEDURES SUBJECT: FIRES INVOLVING LITHIUM-ION BATTERIES

DATE APPROVED: December 18, 2024

APPROVED:

## Scope:

Applicable to all SVFPD response personnel managing lithium-ion battery fires in small devices, vehicles, and fixed Energy Storage Systems (ESS).

## Purpose:

To provide a structured, safe operating guideline when responding to incidents involving lithium-ion batteries, ensuring hazards such as thermal runaway and toxic gases are properly mitigated. The goal is to protect responders, the public, and property while preventing reignition or thermal events.

#### Definitions

- Lithium-Ion Energy Storage System (LiESS): A rechargeable energy storage system
  utilizing lithium-ion technology. Found in portable devices, electric vehicles (EVs), and
  fixed energy storage systems.
- Thermal Runaway: A failure in the LiESS where cells overheat, leading to a cascade of failures and potential fire/explosion.
- Off-Gassing: Toxic, flammable gases released during a thermal event. Hydrogen fluoride may be present.
- Stranded Energy: Residual energy within a LiESS post-event that poses re-ignition or shock hazards

#### Procedure

- 1. General Safety Protocols
  - PPE and Scene Safety:
    - Full firefighting PPE, including SCBA, is mandatory when approaching a LiESS scene to protect from inhalation hazards, burns, and off-gassing.
    - Consider positioning uphill, upwind, and away from potential radiant heat or blast zones.
  - Incident Command:
    - The Incident Commander (IC) must assess the condition and state of the battery system and notify dispatch to add Hazmat for monitoring and health safety concerns.
    - Use thermal imaging cameras (TICs) and gas meters to assess conditions.
  - Thermal Runaway:

# SCOTTS VALLEY FIRE PROTECTION DISTRICT



STANDARD OPERATING PROCEDURES ARTICLE: II

SOP: 2407

SECTION: 2400 RESPONSE PROCEDURES

SUBJECT: FIRES INVOLVING LITHIUM-ION BATTERIES

 Upon detecting signs of thermal runaway (e.g., swelling, popping sounds, offgassing), relay the information to command using "Urgent Traffic." Treat any affected area as a high hazard.

- 2. Small Portable Devices (Phones, Laptops, Scooters)
  - Evacuation:

If safe, remove the device from the building to prevent further risk. Do not use elevators.

- Firefighting Tactics:
  - Use water for suppression. Continue to cool the battery to prevent reignition, as small LiESS can reignite even after initial extinguishment.
  - o For small devices, consider submerging in water to limit thermal events.
- Overhaul:

Conduct a thorough search post-fire and remove all compromised LiESS devices to prevent rekindling.

- Hazardous Disposal:
  - Isolate and dispose of burned Li-ion batteries using proper hazmat protocols, including using overpack drums and steel containers for transport.
- 3. Vehicle Fires (Electric and Hybrid)
  - Initial Actions:
    - Disable Systems: Disconnect the vehicle's 12V battery and use the 1st Responders Cut Loop to isolate the high-voltage system. Remove key fobs 50 feet away from the vehicle.
    - Vehicle Positioning: Use wheel chocks and place the vehicle in park to immobilize it. Never assume an electric vehicle (EV) won't move due to regenerative braking.
  - Firefighting Tactics:
    - Use water directly on the battery modules (typically located underneath the vehicle). Never pierce or cut into areas near the battery.
    - For vehicles, letting the fire burn defensively while protecting exposures may be the best strategy when thermal runaway is suspected.
  - Towing and Post-Incident Monitoring:
    - Use a flatbed tow truck, ensuring the vehicle is covered with a fire blanket before moving. Monitor the vehicle for at least 72 hours, as reignition risk can persist.
- 4. Energy Storage Systems (ESS)
  - Initial Response:
    - Evacuate and isolate the area. Ensure firefighters maintain a distance of at least 75 feet from the ESS unless directly engaged in extinguishing the fire.

SOP No. 2407 Page 2 of 3

# SCOTTS VALLEY FIRE PROTECTION DISTRICT



STANDARD **OPERATING PROCEDURES** 

ARTICLE: II

SOP:

2407

SECTION: 2400 RESPONSE PROCEDURES

SUBJECT: FIRES INVOLVING LITHIUM-ION BATTERIES

- Request a Hazmat team immediately upon arrival.
- Tactical Assessment:
  - Utilize TICs to assess the thermal condition of the ESS. Be cautious as TICs may not reveal internal heating, leading to incomplete assessments.
- Suppression:
  - Establish a reliable water supply. Use large amounts of water for suppression. Do not use dry chemical or foam extinguishers.
  - If flames are not visible but the battery is off-gassing, consult with Hazmat before opening or ventilating the system.
- Re-Ignition Risks:
  - o Re-ignition can occur for hours, days, or even weeks post-event. Monitor damaged ESS units for at least 21 days to prevent rekindling.

#### 5. Post-Fire Procedures

- Long-Term Monitoring:
  - Li-ion batteries remain hazardous after fire events, and continuous monitoring is essential. Hazmat and IC must ensure proper isolation and observation.
- Disposal:
  - o Class I Mobility Devices: Once cooled, transfer the batteries to approved containers (e.g., steel drums) for safe disposal.
  - o Class II and III Vehicles: Post-fire, tow vehicles with a fire blanket in place, and continue monitoring. Inform the tow company of potential hazards.

### **Key Considerations**

- Runoff Contamination: Lithium-ion battery fires may require thousands of gallons of water. Coordinate with environmental agencies to manage hazardous runoff.
- Electric Shock Hazard: Avoid cutting into vehicle parts or fixed systems that may carry high voltage. Always assume vehicles and ESS are energized.
- Re-Ignition Potential: All LiESS involved in fire incidents pose a significant risk of reignition. Regular thermal monitoring should continue for 72 hours post-fire, with periodic checks for 21 days.

Page 3 of 3 SOP No. 2407